Stencil selection algorithms for WENO schemes on unstructured meshes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes

Article history: Received 1 November 2012 Received in revised form 16 July 2013 Accepted 23 July 2013 Available online 2 August 2013

متن کامل

A Robust Reconstruction for Unstructured WENO Schemes

The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with d...

متن کامل

WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions

The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on variou...

متن کامل

Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes

Abstract. In this paper, we present a new type of Hermite weighted essentially nonoscillatory (HWENO) schemes for solving the Hamilton-Jacobi equations on the finite volume framework. The cell averages of the function and its first one (in one dimension) or two (in two dimensions) derivative values are together evolved via time approaching and used in the reconstructions. And the major advantag...

متن کامل

Central WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes

We derive Godunov-type semidiscrete central schemes for Hamilton–Jacobi equations on triangular meshes. High-order schemes are then obtained by combining our new numerical fluxes with high-order WENO reconstructions on triangular meshes. The numerical fluxes are shown to be monotone in certain cases. The accuracy and high-resolution properties of our scheme are demonstrated in a variety of nume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics: X

سال: 2019

ISSN: 2590-0552

DOI: 10.1016/j.jcpx.2019.100037